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MONTE CARLO SIMULATION OF EMISSION FREQUENCIES FROM
PARTIAL FREQUENCY REDISTRIBUTION FUNCTIONS

1. INTRODUCTION

In recent Monte Carlo studies of photon diffusion problems by Auer (1), Wallace (2),
and Avery and House (3), principal attention has been paid to comparisons between the
results for complete and partial frequency redistributions. One of the major difficulties
encountered in these studies was the question of randomly selecting emission frequencies
from a partial frequency redistribution function. Such a function, first derived by Unno
(4), is so complicated that the conventional methods of generating it fail. Consequently
numerical integration, approximations, and inverse interpolation have been used, requiring
significant programming effort as well as unnecessarily long computational times. The
present report is devoted to overcoming these difficulties.

In the course of this work, algorithms were derived not only for the aforementioned
partial frequency redistribution but also, with one exception, for other partial frequency
redistribution functions of astrophysical interest discussed by Hummer (5). Our attempt
to handle the case of i -e j -- i resonance was unsuccessful. Fortunately, it is also a case
of little practical interest.

The problem was approached by first developing a general formula for generating a
frequency from an arbitrary redistribution function and by subsequently obtaining explicit
formulas for the following three partial frequency redistribution functions:

(I) Zero natural line width with coherence in the atom's rest frame
(II) Radiation damping with coherence in the atom's rest frame

(III) Radiation and collision damping with complete redistribution in the atom's
rest frame

For each case, two phase functions are considered. They are the isotropic and the dipole
phase functions, designated by suffixes A and B respectively.

To make the derivation conceptually clear, probability-theory notation is used
throughout this report, and the theory of conditional probability, in particular Bayes'
rule, is applied to obtain various random-number generating schemes. Ultimately
numerical-simulation results are presented in the form of histograms to confirm the
theoretical proof of the suggested generating algorithms.

2. NOTATION AND BAYES' RULE

Let p(x, x'la, b) be the conditional joint probability density function (p.d.f.) of x
and x' for the given a and b. Let the joint p.d.f. of x and x' be given by

Manuscript submitted February 15, 1974.
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p(x, x) =ff p(x, x'la, b)p(a, b) dadb, (1)

where p(a, b) is the joint p.d.f. of a and b. If x and x' represent respectively the absorp-
tion and emission frequency of a photon, then the p.d.f. of x', when a photon of fre-
quency x is absorbed, is by Bayes' rule (e.g., Ref. 6, p. 114)

p(x Ix) = P(x, X) (2)

Equation (2) is in effect the statement of Bayes' rule.

Substitution of Eq. (1) into Eq. (2) yields

ff p(x, x'la, b)p(a, b) dadb

p(x' Ix) r= ' (3)

J JJp(x, x'la, b)p(a, b) dadbdx'

Equations (1) through (3) are the principal probability formulas used in the subsequent
derivation of the random-number generating schemes of this report.

3. FORMULATION

The frequency redistribution functions used herein follow closely Hummer's definitions
(5). However, probability notation, introduced in section 2, is used to distinguish the con-
ditional p.d.f. from the marginal p.d.f.

Consider a photon of frequency v which is absorbed by an atom moving in the
observer's frame with velocity v in the direction n. The reemitted photon has frequency
v' and direction n'. By a suitable choice of coordinate system (e.g., Ref. 5), we obtain
the Doppler relations

P= + Auu (4)
and

v' = + Alulu, (5)

where the reduced velocity u is given by

v 2kT

Furthermore, t is the absorption frequency in the atom's frame, and ,u is the cosine of
the angle between u and n. The quantities t' and p' are defined similarly. The Doppler
width is denoted by A.
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and

Let Po be the central frequency of the line, and let

v- ) - 1O
A

I

A'n

Using these definitions, Eq. (4) and (5) can be written as

--o
__= A + mu

I A - +O

x' = ZA + ,u'u

(6)

(7)

Absorption Probability Density Function

The absorption p.d.f. in the atom's frame, p(Q), is taken to be independent of /I and
u. Two different p(Q) will be considered. The first corresponds to zero natural line width,
with

pQt)dt = 6(5 - vo)d, (8)

where 6(.) is the Dirac delta function; the second corresponds to radiation damping, with

6' 1

In Eq. (9), 6' describes the damping properties of the atom. Using Eq. (6) with x con-
sidered as a random variable and u and u as given, we can transform Eq. (8) into

p(xlu, p) = 6(x -,uu)dx

and Eq. (9) into

p(xlu, p)dx = a 1 dx,
7T a 2-+ (X _U) 2 dx

-o < x < 00,

where a = 6'/7r.

3
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Redistribution Function

The redistribution p.d.f. in the atom's frame, p(Q'I)dt', is the probability that a
photon absorbed at frequency t is reemitted at a frequency between t' and t' + do'. The
two redistribution functions which will be considered correspond to coherence in the atom's
frame, with j

pQt'jt)dt'= SQ' - )dt', (12)

and to noncoherence in the rest frame, with

6' 1

pQ'jt~d f = a ->O dt', (13)
(1 ' W "V)2 + (61)2

where 6' includes both the natural and collisonal broadening. In Eq. (13), p(Q'It) is
statistically independent of t. Using Eqs. (6) and (7), we can transform Eq. (12) into

p(x'lx, p,p', u)dx' = 6(x' -x +pu -u'u)dx' (14)

and Eq. (13) into

p(x'lx, u, MI, x a2 +(x'-='u) 2 (15)

Phase Function

For the isotropic phase function we have

p(u'jy)du'= I dy', -1 < MI'1, (16)
2

whereas for the dipole phase function the corresponding relation is

p( =' = 3 [3u 2 _(p')2 + 3p2(M')2]di', -1I < '1. (17)

Velocity Distribution

The reduced velocity u is assumed to have the Maxwellian distribution

4 U2 2u p(u)du = eU u2 du, 0 • u • (18)

General Expressions for p(x, x') and p(x'lx)

The derivation of p(x, x') and p(x'lx) can now be undertaken using the foregoing
developments. The quantity p(x'lx) is the partial frequency redistribution function from
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which the random numbers will be generated. It should be noted that the special case of
complete frequency redistribution corresponds to p(x'lx) = p(x'). A specific example of
this situation has been considered by Lee (7) for the Voigt function. Recall now that by
the general formula of section 2 we have

p(x' x) =Ifp(x lx, u p' upp(xu p'M u)dpdp'du. (19)

The second p.d.f. in the integral can be written as

p(x, Y, A", u) =p(xlp/, Yu', u)p(A, p', u). (20)

Intuitively we can argue that the absorption probability will not be affected by the
emission direction ji'. Consequently

p(xlp,/', AU) = p(xlu U). (21)

Furthermore, the second p.d.f. on the right-hand side of Eq. (20) can be written as

p(A, lu', U) = p(P, p'IU)P(U). (22)

By an analogous argument, that the joint distribution of ji and ji' is independent of the
velocity u, we have

p(Yp /'Iu) =P(', A') = P(p'jg)p(p)- (23)

Substituting Eq. (20) through (23) into Eq. (19), we obtain

p(x, X') = fffP(x'Ix, p, M', u)p(xlp, u)p(ju'Ju)p(y)p(u)dudp'du. (24)

All p.d.f.'s appearing in the integral of Eq. (24) are known and have been discussed in the
earlier sections. Conceptually Eq. (24) is identical to the general formula derived by
Hummer (5) using a different approach.

In Monte Carlo simulation of photon-diffusion problems, we need to select randomly
an emission frequency x' from a redistribution function p(x'lx) when a photon of fre-
quency x is absorbed. Unfortunately we cannot use Eq. (2), with p(x, x') given by Eq.
(24), because of the difficulty in obtaining analytical formulas for random frequency
generation. Hence we proceed to transform the basic expression for p(x'lx),

p Ilx) =fffp (x Ix, M, p u~p (g M' u lx)dydp'du, (25)

into a more convenient form. By virtue of the fundamental probability relations, the
second p.d.f. in the integral is converted into

p(,u, /t , u Ix) = p (1, u, I U', x)p (U x), (26)
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and subsequently

p(P, P'lu, x) =p(p'P, U, x)p(Plu, x). (27)

Since the direction ji' of the reemitted photon, when p is given, is independent of the
velocity u of the atom and the absorption frequency x, we have

P(OPIp, U, X) = P(O'IP), -1 < P < 1. (28)

Substituting Eq. (26) through (28) into Eq. (25), we have the key equation of this report:

p(x'Ix) =fjf p(x'Ix, p, p', u)p(p'Ip)p(plu, x)p(ulx)dpdp'du. (29)

4. GENERAL ALGORITHM

A general random-frequency generating scheme based on Eq. (29) involves four
steps:

1. Generate u when x is given from p(u jx);
2. Generate 1u from p(plu, x) using the u generated in step (1) and x;
3. Generate p' from p(p'lg) using the pu generated in step (2); ;
4. Generate x' from p(x'lx, ji, ji', u) using x and the ju', ji, and u obtained in steps

(1) through (3).

The generation of p' and x' in steps 3 and 4 is simple because the phase function
p(,u'lg) and the redistribution function p(x'lx, ji, ji', u), discussed in section 2, can be
easily integrated and inverted analytically when used in connection with the well-known
random-number generating methods described, for instance, by Cashwell and Everett (8).
The difficulties to be resolved reside in steps (1) and (2). We proceed to discuss these
in detail. Note that p(ulx) is not equal to p(u). In other words the distribution of u does
depend on the value of frequency x. Applying Bayes' rule, we have

p(u, X) _p(xlu)p(u) _ fp(xlu, g)p(p)p(u) dp
p(ulx) = ) p(x ) p(x) 9 (30)

where p(xlu, ji) is the absorption p.d.f. given by either Eq. (8) or (9), p(u) is given by
Eq. (18), and

p(U)=- -1=••1.

The denominator p(x) represents the absorption-line profile. If Eq. (8) is adopted, we
have the Doppler absorption profile, and if Eq. (9) is used, we have the Voigt absorption
profile. The proofs are straightforward, using the formula

6



NRL REPORT 7736

1

P(=¢(X) = OW p(xlp, u)p(pu)p(u) dpdu. (31)

Similarly

pAplu, X) =p(p, U, x) - p(xlp, U)p(plu)p(u)
p(u ,x) p(Xlu)p(u)

Since p(plu) = p(0), we have

P(Plu, x) = p(xlp, u)p(0) - p(xlp, u)p(g) (32)

p(xiu) fp(XI#, u)p(P) dp

All p.d.f. 's are known and have been given in section 2. Hence u can be simulated from
Eq. (32).

In the next section we proceed to derive random-number generating algorithms for
each case listed in the introductory section.

5. ALGORITHMS FOR GENERATING RANDOM NUMBERS;
NUMERICAL RESULTS

Case I - Zero Natural Line Width with Coherent Redistribution
in the Atom's Rest Frame

With p(xlu, ji) and p(x'lx, ji, ji', u) given by Eqs. (10) and (14) respectively, we have,
by applying Eqs. (30) and (31),

p(ulx)= 2ue -(ux2) u > xI, (33)

and p(x) = exp (-x2 )//V7 The latter relation describes the Doppler profile.

The generation of u when x is given follows the conventional inverse method based
on the expressions

r= p(ulx) dx = 1- e-u2,x2
lxl

and

l (34)
u = - Qn (rle~X ), (34)

7
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where ri is a uniformly distributed random number in the interval [0, 1]. Ways of ob-
taining r, are readily available (for example, Ref. 9). For convenience, throughout this
paper {ri} will denote a sequence of independent uniformly distributed random numbers
in the interval [0, 1]. Similarly, using Eq. (32), we have

(u6(x - up) if u > lxi;
P(Plx, U) = (35)

t 0 otherwise.

The generating scheme is simply

x-. (36)
U

So far we have obtained generating schemes for steps (1) and (2) of the general
algorithm. For step (3) we consider the isotropic and the dipole phase functions separ-
ately. For the isotropic phase function, p(,u'l p) is uniformly distributed in the interval
[-1, 1], as given by Eq. (16). The generating scheme is

P = (r2 - , (37)

where r2 is a random number selected from a uniform distribution in the interval [0, 1].
For the dipole phase function the generating procedure is more complicated. The
algorithm given for it is based on the well-known rejection method, which, for p(,u'Iu)
given by Eq. (17), proved to be very efficient. The procedure for selecting p' for the
dipole phase function involves the following steps:

(a) Simulate u' from [-1, 1] by using Eq. (37).
(b) Select a uniformly distributed random number r3 from [0, 1], and accept the

value of p' if

p(AOP') >r
M 3'

where

M = max {p(p 'Ip)}, -1 •p <11

If not, return to step a.

The value of M depends on p and is given by

{ 3(,U2 + 1)/8 if lp I > 1VWY;
M = 

3(3 - p2 )/16 if JIJl < 1i3./

This previous algorithm is incorporated in all cases involving the dipole phase function. In
summary we have the following simulation algorithms:

8
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Simulation Algorithms I-A and I-B

For a given x the emitted frequency is generated by the following steps:

x2

(1) u = /-n (reX )

(2) u =xlu;

(3) For the isotropic phase function use Eq. (37); for the dipole phase function use
the simulation algorithm for the dipole phase function;

(4) x' =x -pMu +p'u.

It should be noted that the equation in step (4) can be simplified into x' = p'u by using
the equation of step (2).

It is of some interest to compare the corresponding redistribution functions first ob-
tained by Unno (4) and Field (10). For isotropic scattering their result is

PI-A(x, X) = erfc (I1I),

and for dipole scattering it is

3 2 + (X,)2) + 4X2(x,)2] e-~~IiI(2I~+1PI B(x, x) = 8 { erfc (191)[3 + 2(x2 + (x )2) + 4x2 (x) 2] (2x2 + 1)

where

lcI = max{Ix I, Ix }

and

Ix1 = min {Ix'1, lXi }.

Numerical-simulation results produced by algorithms I-A and I-B are presented in
Fig. 1 to confirm the theoretical development. The points of each rectangular element in
the histograms are connected by smooth curves, and only the positive half of x' is simulated,
because p(x'lx) is symmetrical in x'. Comparison of Fig. 1 with the curves plotted by
Hummer (5) and Jefferies (11) further indicates that algorithms I-A and I-B are the correct
mechanisms for selecting random frequency x' for these cases.

Case II - Radiation Damping with Coherence in the Atom's Rest Frame

With p(xlu, p) and p(x'lx, ji, p', u) given by Eqs. (11) and (14) respectively, we
compute p(ulx) using Eqs. (30) and (31). Thus

9
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-ISOTROPIC SCATTERING
----- DIPOLE SCATTERING

06 0.6

z 0.5
K

foOasA-Aad ae -

'<'03 < ,~~AX=

0.2 [ ( l

0.o 1.0 2.0 3.0
x

Fig. l -Histogram of simulated frequency distribution
for Case I-A and Case I-B

p(ulx) = 7 3/2 x)[an-' ( a ) + tan-' ( a )] e~u2 2u, 0 6 u 6 < (38)p~l)H(a,x) It a a

Here we have introduced the well-known Voigt distribution function

_u2
p(x) =H(a, x) =3/2 j a2 + u)2 u.

It is very difficult, and perhaps impossible, to obtain an efficient analytical formula to
simulate u from this p(ulx). Consequently numerical methods are used in its random-
number generation. This involves computing a cumulative density function, solving for
its inverse, tabulating the inverse, and then generating the random number from the
tabulated data. For a given absorption frequency x between sampling points, interpolation
must be used. Generally the large amounts of data would have to be precomputed and
stored. However, for large x(x > 6 for a = 10-2 to 10-4) we can approximate Eq. (38)
by the Maxwellian distribution

p(u IX) t 4u2e 0 6 u6<

This approximation greatly simplifies the computation needed outside the main computer
program and reduces its storage requirements. Furthermore, once the necessary informa-
tion has been precomputed and stored, it offers a very efficient means of simulating ran-
dom numbers.

10
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Plots of p(u Ix) are shown in Fig. 2. It can be seen that when x = 1 or 2, p(u Ix) be-
haves like a Dirac delta function centered at u = 1 or u = 2 respectively. Two peaks are
observed for the x = 3 curve, which provides an explanation for the unusual behavior of
PII A(x lx) and PII B(x lx) at x = 3 shown in Figs. 3 and 4. For x > 4, p(ulx) is very
close to the Maxwellian distribution, which is independent of x.

2.0 X2
\ a=~~0.0030

1.5 x l=I

.3 1.0 f

Fig. 2 - Probability density function of u given x

K 0.5

0.4

0.3

0.2

0.1

a = 0.0030

-3 -2 -I 0 1 2 3
x

4 5 6

Fig. 3 - Histogram of simulated frequency distribution for Case II-A
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a=0.0030

0.4 -

0.3-

0.2-

0.1

0.0
-4-3 -2 -I 0 I 2 3 4 5 6 7 8

x

Fig. 4 - Histogram of simulated frequency distribution for Case IH-B

We now proceed to derive simulation algorithms for p(plu, x). Substituting Eq. (11)
into Eq. (32), we have

a

P(lu, x)=- a2 + (X -pu)2 1<p6<1. (39)

Applying the conventional inverse method for generating p, we have

r2 = j P(plux) dp

and

a 1r2 \, atan - -A) +X, (40)U \B /
where

A = tan 1 (U +X)

and

U

[tan- (U -x) + A]

In summary, for case II we have the following simulation algorithms:

12
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Simulation Algorithms II-A and II-B

For a given x, x' is selected by performing the following steps:

(1) Simulate u from Eq. (38) by a numerical method.
(2) Simulate p using Eq. (40).
(3) Simulate pi' for the isotropic phase function using Eq. (37) and for the dipole

phase function using the simulation algorithm for the dipole phase function.
(4) x' = x - u(p -p').

For comparison, the corresponding p(x', x) developed by Unno (4) and Sobolev (12)
are:

3~ l2 eX Fa ( a- x-a u

PIIAB(X, X) = - a d8 fIx-xl/2 x-u

3x-t (x' - t + x - t _` (x _ t_ dtduX ~~ u ) u k~t2 +a2

Numerical results provided by algorithms II-A and II-B are plotted in Fig. 3 and 4
respectively. For each curve 40,000 runs have been simulated; and midpoints of each
rectangular element in the histogram are fitted by a smooth curve. For x = 2 and 3,
PII-B(X lx) shows sagging in the center part of the curves compared with pll A(XIlx).

Case III - Radiation and Collison Damping with Complete
Redistribution in the Atom's Rest Frame

In this case Eqs. (11) and (15) are adopted for p(xlu, u) and p(x'Ix, p, p', U)
respectively. The quantities p(ulx) and p(p'Iu, x) are identical to those used in Case II.
Hence the simulation algorithms for III-A and III-B are identical to algorithms II-A and
II-B, except that step (4) is replaced by

x' = a tan [r4 -)r] + p' (41)

This change is introduced because Eq. (15) is used rather than Eq. (14). Equation (41)
constitutes the simulation algorithm for x' from p(x'lx, u, pA', u), given by Eq. (15).

13
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Hummer (5) showed that for isotropic scattering,

PIV(X, X) = 7r-5/2 -|eu2 [tan- (u +x) + tanl (u _x) ]
0

X[tan-1 (u +x) + tan-1 (-) Idu.

However, its counterpart for dipole scattering did not appear in his paper.

a = 0.0030

0=O

-4 -3 -2 -I 0 1 2 3 4
x

Fig. 5 - Histogram of simulated frequency distribution
for Case III-A

PmB(xK/x) a=0.0030

-3 -2 -I 0 1 2 3 4
x

Fig. 6 - Histogram of simulated frequency distribution
for Case III-B
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Numerical-simulation results for both isotropic and dipole scattering are shown in
Fig..5 and 6. Unlike the results of case II, curves of PmA(x'Ix) and pIII B(x'Ix) are
centered at x' = 0. No significant difference is observed between curves of III-A and III-B
except at x = 2, where sagging in the center part of the curve is observed for dipole
scattering.

6. SUMMARY

We have presented simple and computationally efficient algorithms for randomly
selecting emission frequencies based on a given absorption frequency for a class of partial
frequency redistribution functions. Numerical-simulation results presented in the form of
histograms substantiate the theoretical derivation of the algorithms. The author believes
that these algorithms should be of great value in making Monte Carlo studies of photon-
diffusion problems simpler and more efficient.

The author thanks Drs. I. Jurkevich and R. Meier, Naval Research Laboratory, for
introducing the problem and for many helpful discussions.
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